If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+11q=0
a = 1; b = 11; c = 0;
Δ = b2-4ac
Δ = 112-4·1·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-11}{2*1}=\frac{-22}{2} =-11 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+11}{2*1}=\frac{0}{2} =0 $
| 2(2x+1)=28(2(x-2+ | | 2(2x+1)=28(2(x-2) | | G(×)=4x | | 4-(1/2x+5)=16 | | 3(m=1.5)=1.5(2m+3) | | 2a/3)+(1/5)=(7/6 | | -1.5+k=8.5 | | -9x/2+1=55 | | (25x-8)+(5x+32)=180 | | 4u−-3=19 | | 9x+8=8-6x | | 3(2x+7)=(x+4)-3 | | -9(t+2)=4(t-15)t= | | 9x-6x=8x2 | | 4u—-3=19 | | 14-c/8=3c/4-21 | | -3(6x-3)=81 | | x+(19x+60)=180 | | 7(w+7)=70 | | 21x+4=28 | | x+(19x+60)=190 | | 2b+3(2+b)=477 | | 14x=6x+15 | | 7+3r=r-1 | | 18x-7=7-11x | | (4x-24)/2=4 | | 3b+24=-16 | | 3w=27-6w | | 8=11-d | | 24r^2+40r=0 | | 11X-10y=48 | | -6(x-2)=6x-12-12x |